Android屏幕刷新机制-Choreographer

2022-11-10/2022-11-10

基础概念

屏幕刷新率

一秒内屏幕显示了多少帧,单位 Hz(赫兹),如常见的 60 Hz则是指屏幕一秒钟显示了60帧的画面。刷新频率取决于硬件的固定参数

逐行扫描

显示器并不是一次性将画面显示到屏幕上,而是从左到右边,从上到下逐行扫描,顺序显示整屏的一个个像素点,不过这一过程快到人眼无法察觉到变化。

image-20221110192857439 image-20221110193028518

画面撕裂(tearing)

如果只有一块缓冲区用来交换屏幕和内存之间的显示资源,那么有可能出现正在发生逐行扫描时往缓冲区中写入了新的数据,此时显示的效果一个屏幕内的数据来自2个不同的帧,画面会出现撕裂感,如下图

image-20221110193436667

双缓存

双缓存是为了解决画面撕裂问题的

画面撕裂是因为只有一块内存作为显示资源的缓冲区,而这块缓冲区同时需要GPU往里面写入显示资源,还要和屏幕进行显示帧资源的交换,如果我们要保证读和写不发生矛盾的话,可以加锁去解决问题,但是加锁显然会增加UI渲染的耗时,这对于追求流畅度的Android系统显然是不可取的

那咋解决画面撕裂呢? 答案是使用 双缓存

可以把写入的帧缓冲区和读取的缓冲区分开

一个叫做front buffer,一个叫做back buffer

GPU 将完成的一帧图像数据写入到 Back Buffer,而显示器逐行扫描时则交换 front Buffer里的资源

image-20221110194337756

什么时候交换front Buffer和Back Buffer呢

当一次逐行扫描完成后,设备需要重新回到第一行以进入下一次的循环,此时有一段时间空隙,称为VerticalBlanking Interval(VBI)

可以利用这个时间间隙发送一个Vertical Synchronization(VSync)信号通知front Buffer和Back Buffer进行交换,为了交换的效率较高,可以采取指向俩块buffer的指针进行交换即可

Project butter

双缓存+VSync存在的问题

image-20221110195953911

如上图所示,如果下一帧开始绘制的时间过晚,就可能导致当下一个VSync信息到来时绘制工作可能还没有完成,此时就发生了丢帧

Drawing with Vsync

为了优化显示性能,Google在Android 4.1系统中对Android Display系统进行了重构,实现了Project Butter(黄油工程):系统在收到VSync信号后,将马上开始下一帧的渲染。

image-20221110200653010

三缓存

当界面比较复杂时,渲染可能会超过一个FrameInterval(在60HZ的机器上这个值为16.6ms),

image-20221110200810167

这可能会导致出现越来越多的Jank

可以采用三缓存机制来解决

因为渲染可以分为CPU渲染和GPU渲染俩部分,当CPU渲染完GPU正在渲染时,实际上此时CPU是空闲的,而由于CPU和GPU在双缓存中使用的是一块内存,因此CPU此时也只能空闲

三缓存就是在双缓冲机制基础上增加了一个 Graphic Buffer 缓冲区

当下一个VSync信号来临时,即使此时上一个帧可能还没有绘制完,但可以让CPU开始下一帧的绘制

image-20221110201355904

Choreographer

What is Choreographer?

上面讲到,Google在Android 4.1系统中对Android Display系统进行了优化:在收到VSync信号后,将马上开始下一帧的渲染。

Choreographer就是用来实现这一功能的,它可以监控VSync信号后通知CPU/GPU开始渲染工作

源码分析

我们知道,Activity走完onResume方法后,会进行window的添加。window添加过程会 调用ViewRootImpl的setView()方法,setView()方法会调用requestLayout()方法来请求绘制布局,requestLayout()方法内部又会走到scheduleTraversals()方法,最后会走到performTraversals()方法,接着到了我们熟知的测量、布局、绘制三大流程了

所有UI的变化都是走到ViewRootImpl的scheduleTraversals()方法。

而scheduleTraversals() 到 performTraversals() 中间经历了什么呢?

根据我们上面的介绍,在VSync信号到来时才会执行绘制,即performTraversals()方法。

//ViewRootImpl.java
    @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
    void scheduleTraversals() {
        if (!mTraversalScheduled) {
            //使用mTraversalScheduled字段保证同时间多次更改只会刷新一次,例如TextView连续两次setText(),也只会走一次绘制流程。
            mTraversalScheduled = true;
            //添加同步屏障,屏蔽同步消息,保证VSync到来后立即执行绘制
            mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
            //调用mChoreographer.postCallback(),发送一个会在下一帧执行的回调
            mChoreographer.postCallback(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
            notifyRendererOfFramePending();
            pokeDrawLockIfNeeded();
        }
    }

    final class TraversalRunnable implements Runnable {
        @Override
        public void run() {
            doTraversal();
        }
    }

    void doTraversal() {
        if (mTraversalScheduled) {
            mTraversalScheduled = false;
            mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);

            if (mProfile) {
                Debug.startMethodTracing("ViewAncestor");
            }

            //开始View的绘制流程
            performTraversals();

            if (mProfile) {
                Debug.stopMethodTracing();
                mProfile = false;
            }
        }
    }

在继续看postCallback方法前,先来看看Choreographer的构造方法

private Choreographer(Looper looper, int vsyncSource) {
        mLooper = looper;
        mHandler = new FrameHandler(looper);
        //USE_VSYNC 4.1以上默认是true,表示 具备接受VSync的能力,这个接受能力就是FrameDisplayEventReceiver
        mDisplayEventReceiver = USE_VSYNC
                ? new FrameDisplayEventReceiver(looper, vsyncSource)
                : null;
        mLastFrameTimeNanos = Long.MIN_VALUE;

        //// 计算一帧的时间,Android手机屏幕是60Hz的刷新频率,就是16ms
        mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());

        // 创建一个链表类型CallbackQueue的数组,大小为5,
        //也就是数组中有五个链表,每个链表存相同类型的任务:输入、动画、遍历绘制等任务(CALLBACK_INPUT、CALLBACK_ANIMATION、CALLBACK_TRAVERSAL)
        mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
        for (int i = 0; i <= CALLBACK_LAST; i++) {
            mCallbackQueues[i] = new CallbackQueue();
        }
        // b/68769804: For low FPS experiments.
        setFPSDivisor(SystemProperties.getInt(ThreadedRenderer.DEBUG_FPS_DIVISOR, 1));
    }

    private final class FrameHandler extends Handler {
        public FrameHandler(Looper looper) {
            super(looper);
        }

        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case MSG_DO_FRAME:
                    doFrame(System.nanoTime(), 0, new DisplayEventReceiver.VsyncEventData());
                    break;
                case MSG_DO_SCHEDULE_VSYNC:
                    doScheduleVsync();
                    break;
                case MSG_DO_SCHEDULE_CALLBACK:
                    doScheduleCallback(msg.arg1);
                    break;
            }
        }
    }

回头看mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null)方法,注意到第一个参数是CALLBACK_TRAVERSAL,表示回调任务的类型,共有以下5种类型:

//输入事件,首先执行
    public static final int CALLBACK_INPUT = 0;
    //动画,第二执行
    public static final int CALLBACK_ANIMATION = 1;
    //插入更新的动画,第三执行
     /**
     * Callback type: Animation callback to handle inset updates. This is separate from
     * {@link #CALLBACK_ANIMATION} as we need to "gather" all inset animation updates via
     * {@link WindowInsetsAnimationController#setInsetsAndAlpha(Insets, float, float)} for multiple
     * ongoing animations but then update the whole view system with a single callback to
     * {@link View#dispatchWindowInsetsAnimationProgress} that contains all the combined updated
     * insets.
     * <p>
     * Both input and animation may change insets, so we need to run this after these callbacks, but
     * before traversals.
     * <p>
     * Runs before traversals.
     * @hide
     */
    public static final int CALLBACK_INSETS_ANIMATION = 2;
    //绘制,第四执行
    /**
     * Callback type: Traversal callback.  Handles layout and draw.  Runs
     * after all other asynchronous messages have been handled.
     * @hide
     */
    public static final int CALLBACK_TRAVERSAL = 3;
    /**
     * Callback type: Commit callback.  Handles post-draw operations for the frame.
     * Runs after traversal completes.  The {@link #getFrameTime() frame time} reported
     * during this callback may be updated to reflect delays that occurred while
     * traversals were in progress in case heavy layout operations caused some frames
     * to be skipped.  The frame time reported during this callback provides a better
     * estimate of the start time of the frame in which animations (and other updates
     * to the view hierarchy state) actually took effect.
     * @hide
     */
    public static final int CALLBACK_COMMIT = 4;

postCallback()内部调用postCallbackDelayed(),接着又调用postCallbackDelayedInternal()

/**
     * Posts a callback to run on the next frame.
     * <p>
     * The callback runs once then is automatically removed.
     * </p>
     *
     * @param callbackType The callback type.
     * @param action The callback action to run during the next frame.
     * @param token The callback token, or null if none.
     *
     * @see #removeCallbacks
     * @hide
     */
    @UnsupportedAppUsage
    @TestApi
    public void postCallback(int callbackType, Runnable action, Object token) {
        postCallbackDelayed(callbackType, action, token, 0);
    }

    /**
     * Posts a callback to run on the next frame after the specified delay.
     * <p>
     * The callback runs once then is automatically removed.
     * </p>
     *
     * @param callbackType The callback type.
     * @param action The callback action to run during the next frame after the specified delay.
     * @param token The callback token, or null if none.
     * @param delayMillis The delay time in milliseconds.
     *
     * @see #removeCallback
     * @hide
     */
    @UnsupportedAppUsage
    @TestApi
    public void postCallbackDelayed(int callbackType,
            Runnable action, Object token, long delayMillis) {
        if (action == null) {
            throw new IllegalArgumentException("action must not be null");
        }
        if (callbackType < 0 || callbackType > CALLBACK_LAST) {
            throw new IllegalArgumentException("callbackType is invalid");
        }

        postCallbackDelayedInternal(callbackType, action, token, delayMillis);
    }

    private void postCallbackDelayedInternal(int callbackType,
            Object action, Object token, long delayMillis) {
        if (DEBUG_FRAMES) {
            Log.d(TAG, "PostCallback: type=" + callbackType
                    + ", action=" + action + ", token=" + token
                    + ", delayMillis=" + delayMillis);
        }

        synchronized (mLock) {
            final long now = SystemClock.uptimeMillis();
            final long dueTime = now + delayMillis;
            //取对应类型的CallbackQueue添加任务
            mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);

            if (dueTime <= now) {
                //立即执行
                scheduleFrameLocked(now);
            } else {
                //延迟运行,最终也会走到scheduleFrameLocked()
                Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
                msg.arg1 = callbackType;
                msg.setAsynchronous(true);
                mHandler.sendMessageAtTime(msg, dueTime);
            }
        }
    }

postCallbackDelayedInternal最后一定会调用scheduleFrameLocked

private void scheduleFrameLocked(long now) {
        if (!mFrameScheduled) {
            mFrameScheduled = true;
            if (USE_VSYNC) {
                if (DEBUG_FRAMES) {
                    Log.d(TAG, "Scheduling next frame on vsync.");
                }

                // If running on the Looper thread, then schedule the vsync immediately,
                // otherwise post a message to schedule the vsync from the UI thread
                // as soon as possible.
                //当前执行的线程,是否是mLooper所在线程
                if (isRunningOnLooperThreadLocked()) {
                    //监控 VSYNC 信号
                    scheduleVsyncLocked();
                } else {
                    // 若不在,就用mHandler发送消息到原线程,最后还是调用scheduleVsyncLocked方法
                    Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
                    msg.setAsynchronous(true);
                    mHandler.sendMessageAtFrontOfQueue(msg);
                }
            } else {
                // 如果未开启VSYNC则直接doFrame方法(4.1后默认开启)
                final long nextFrameTime = Math.max(
                        mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
                if (DEBUG_FRAMES) {
                    Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
                }
                Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
                msg.setAsynchronous(true);
                mHandler.sendMessageAtTime(msg, nextFrameTime);
            }
        }
    }

接下看Choreographer是怎么监控 VSYNC 信号的

@UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
    private void scheduleVsyncLocked() {
        try {
            Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#scheduleVsyncLocked");
            mDisplayEventReceiver.scheduleVsync();
        } finally {
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }
    }

    /**
     * Schedules a single vertical sync pulse to be delivered when the next
     * display frame begins.
     */
    @UnsupportedAppUsage
    public void scheduleVsync() {
        if (mReceiverPtr == 0) {
            Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
                    + "receiver has already been disposed.");
        } else {
            nativeScheduleVsync(mReceiverPtr);
        }
    }

scheduleVsync()使用native方法nativeScheduleVsync()去申请VSYNC信号,当VSync信号到来时会回调onVsync()

private final class FrameDisplayEventReceiver extends DisplayEventReceiver
            implements Runnable {
        private boolean mHavePendingVsync;
        private long mTimestampNanos;
        private int mFrame;

        public FrameDisplayEventReceiver(Looper looper, int vsyncSource) {
            super(looper, vsyncSource);
        }

        @Override
        public void onVsync(long timestampNanos, long physicalDisplayId, int frame) {
            // Post the vsync event to the Handler.
            // The idea is to prevent incoming vsync events from completely starving
            // the message queue.  If there are no messages in the queue with timestamps
            // earlier than the frame time, then the vsync event will be processed immediately.
            // Otherwise, messages that predate the vsync event will be handled first.
            long now = System.nanoTime();
            if (timestampNanos > now) {
                Log.w(TAG, "Frame time is " + ((timestampNanos - now) * 0.000001f)
                        + " ms in the future!  Check that graphics HAL is generating vsync "
                        + "timestamps using the correct timebase.");
                timestampNanos = now;
            }

            if (mHavePendingVsync) {
                Log.w(TAG, "Already have a pending vsync event.  There should only be "
                        + "one at a time.");
            } else {
                mHavePendingVsync = true;
            }

            mTimestampNanos = timestampNanos;
            mFrame = frame;
            //将本身作为runnable传入msg, 发消息后 会走run(),即doFrame(),也是异步消息
            Message msg = Message.obtain(mHandler, this);
            msg.setAsynchronous(true);
            mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
        }

        @Override
        public void run() {
            mHavePendingVsync = false;
            doFrame(mTimestampNanos, mFrame);
        }
    }

onVsync()中,将接收器本身作为runnable传入异步消息msg,并使用mHandler发送msg,最终执行的就是Choreographer的doFrame()方法了。

void doFrame(long frameTimeNanos, int frame,
            DisplayEventReceiver.VsyncEventData vsyncEventData) {
        final long startNanos;
        final long frameIntervalNanos = vsyncEventData.frameInterval;
        try {
            if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
                Trace.traceBegin(Trace.TRACE_TAG_VIEW,
                        "Choreographer#doFrame " + vsyncEventData.id);
            }
            synchronized (mLock) {
                if (!mFrameScheduled) {
                    traceMessage("Frame not scheduled");
                    return; // no work to do
                }

                if (DEBUG_JANK && mDebugPrintNextFrameTimeDelta) {
                    mDebugPrintNextFrameTimeDelta = false;
                    Log.d(TAG, "Frame time delta: "
                            + ((frameTimeNanos - mLastFrameTimeNanos) * 0.000001f) + " ms");
                }

                long intendedFrameTimeNanos = frameTimeNanos;
                startNanos = System.nanoTime();
                final long jitterNanos = startNanos - frameTimeNanos;
                if (jitterNanos >= frameIntervalNanos) {
                    final long skippedFrames = jitterNanos / frameIntervalNanos;
                    if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
                        Log.i(TAG, "Skipped " + skippedFrames + " frames!  "
                                + "The application may be doing too much work on its main thread.");
                    }
                    final long lastFrameOffset = jitterNanos % frameIntervalNanos;
                    if (DEBUG_JANK) {
                        Log.d(TAG, "Missed vsync by " + (jitterNanos * 0.000001f) + " ms "
                                + "which is more than the frame interval of "
                                + (frameIntervalNanos * 0.000001f) + " ms!  "
                                + "Skipping " + skippedFrames + " frames and setting frame "
                                + "time to " + (lastFrameOffset * 0.000001f) + " ms in the past.");
                    }
                    frameTimeNanos = startNanos - lastFrameOffset;
                }

                if (frameTimeNanos < mLastFrameTimeNanos) {
                    if (DEBUG_JANK) {
                        Log.d(TAG, "Frame time appears to be going backwards.  May be due to a "
                                + "previously skipped frame.  Waiting for next vsync.");
                    }
                    traceMessage("Frame time goes backward");
                    scheduleVsyncLocked();
                    return;
                }

                if (mFPSDivisor > 1) {
                    long timeSinceVsync = frameTimeNanos - mLastFrameTimeNanos;
                    if (timeSinceVsync < (frameIntervalNanos * mFPSDivisor) && timeSinceVsync > 0) {
                        traceMessage("Frame skipped due to FPSDivisor");
                        scheduleVsyncLocked();
                        return;
                    }
                }

                mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos, vsyncEventData.id,
                        vsyncEventData.frameDeadline, startNanos, vsyncEventData.frameInterval);
                //恢复标志位
                mFrameScheduled = false;
                //记录最后一帧时间
                mLastFrameTimeNanos = frameTimeNanos;
                mLastFrameIntervalNanos = frameIntervalNanos;
                mLastVsyncEventData = vsyncEventData;
            } //end lock

            AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS);

            // 按类型顺序 执行任务
            mFrameInfo.markInputHandlingStart();
            doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos, frameIntervalNanos);

            mFrameInfo.markAnimationsStart();
            doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos, frameIntervalNanos);
            doCallbacks(Choreographer.CALLBACK_INSETS_ANIMATION, frameTimeNanos,
                    frameIntervalNanos);

            mFrameInfo.markPerformTraversalsStart();
            doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos, frameIntervalNanos);

            doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos, frameIntervalNanos);
        } finally {
            AnimationUtils.unlockAnimationClock();
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }

        if (DEBUG_FRAMES) {
            final long endNanos = System.nanoTime();
            Log.d(TAG, "Frame " + frame + ": Finished, took "
                    + (endNanos - startNanos) * 0.000001f + " ms, latency "
                    + (startNanos - frameTimeNanos) * 0.000001f + " ms.");
        }
    }

接着执行doCallbacks 方法

void doCallbacks(int callbackType, long frameTimeNanos, long frameIntervalNanos) {
        CallbackRecord callbacks;
        synchronized (mLock) {
            // We use "now" to determine when callbacks become due because it's possible
            // for earlier processing phases in a frame to post callbacks that should run
            // in a following phase, such as an input event that causes an animation to start.
            final long now = System.nanoTime();
            // 根据callbackType从CallbackkQueue中查找到达执行时间的CallbackRecord
            callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(
                    now / TimeUtils.NANOS_PER_MS);
            if (callbacks == null) {
                return;
            }
            mCallbacksRunning = true;

            // Update the frame time if necessary when committing the frame.
            // We only update the frame time if we are more than 2 frames late reaching
            // the commit phase.  This ensures that the frame time which is observed by the
            // callbacks will always increase from one frame to the next and never repeat.
            // We never want the next frame's starting frame time to end up being less than
            // or equal to the previous frame's commit frame time.  Keep in mind that the
            // next frame has most likely already been scheduled by now so we play it
            // safe by ensuring the commit time is always at least one frame behind.
            if (callbackType == Choreographer.CALLBACK_COMMIT) {
                final long jitterNanos = now - frameTimeNanos;
                Trace.traceCounter(Trace.TRACE_TAG_VIEW, "jitterNanos", (int) jitterNanos);
                if (jitterNanos >= 2 * frameIntervalNanos) {
                    final long lastFrameOffset = jitterNanos % frameIntervalNanos
                            + frameIntervalNanos;
                    if (DEBUG_JANK) {
                        Log.d(TAG, "Commit callback delayed by " + (jitterNanos * 0.000001f)
                                + " ms which is more than twice the frame interval of "
                                + (frameIntervalNanos * 0.000001f) + " ms!  "
                                + "Setting frame time to " + (lastFrameOffset * 0.000001f)
                                + " ms in the past.");
                        mDebugPrintNextFrameTimeDelta = true;
                    }
                    frameTimeNanos = now - lastFrameOffset;
                    mLastFrameTimeNanos = frameTimeNanos;
                }
            }
        }
        try {
            Trace.traceBegin(Trace.TRACE_TAG_VIEW, CALLBACK_TRACE_TITLES[callbackType]);
            // 迭代执行队列所有任务
            for (CallbackRecord c = callbacks; c != null; c = c.next) {
                if (DEBUG_FRAMES) {
                    Log.d(TAG, "RunCallback: type=" + callbackType
                            + ", action=" + c.action + ", token=" + c.token
                            + ", latencyMillis=" + (SystemClock.uptimeMillis() - c.dueTime));
                }
                c.run(frameTimeNanos);
            }
        } finally {
            synchronized (mLock) {
                mCallbacksRunning = false;
                do {
                    final CallbackRecord next = callbacks.next;
                    recycleCallbackLocked(callbacks);
                    callbacks = next;
                } while (callbacks != null);
            }
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }
    }

主要内容就是取对应任务类型的队列,遍历队列执行所有任务,执行任务是 CallbackRecord的 run 方法:

private static final class CallbackRecord {
        public CallbackRecord next;
        public long dueTime;
        public Object action; // Runnable or FrameCallback
        public Object token;

        @UnsupportedAppUsage
        public void run(long frameTimeNanos) {
            if (token == FRAME_CALLBACK_TOKEN) {
                // 通过postFrameCallback 或 postFrameCallbackDelayed,会执行这里
                ((FrameCallback)action).doFrame(frameTimeNanos);
            } else {
                //取出Runnable执行run()
                ((Runnable)action).run();
            }
        }
    }

前面看到mChoreographer.postCallback传的token是null,所以执行run(),这里的action就是 ViewRootImpl 发起的绘制任务mTraversalRunnable,然后开启View的绘制流程

那么什么时候 token == FRAME_CALLBACK_TOKEN 呢?在Choreographer的postFrameCallback()方法里token == FRAME_CALLBACK_TOKEN

public void postFrameCallback(FrameCallback callback) {
        postFrameCallbackDelayed(callback, 0);
    }

    public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) {
        if (callback == null) {
            throw new IllegalArgumentException("callback must not be null");
        }

        //也是走到是postCallbackDelayedInternal,并且注意是CALLBACK_ANIMATION类型,
        //token是FRAME_CALLBACK_TOKEN,action就是FrameCallback
        postCallbackDelayedInternal(CALLBACK_ANIMATION,
                callback, FRAME_CALLBACK_TOKEN, delayMillis);
    }

    public interface FrameCallback {
        public void doFrame(long frameTimeNanos);
    }

利用Choreographer进行帧率监控

Choreographer的postFrameCallback()可以用来计算丢帧情况和帧率检测

public class FPSFrameCallback implements Choreographer.FrameCallback {

    private static final String TAG = "FPS_TEST";
    private long mLastFrameTimeNanos;
    private long mFrameIntervalNanos;

    private long lastTime = 0;
    private long curTime;
    private int FPS = 0;

    public FPSFrameCallback(long lastFrameTimeNanos) {
        mLastFrameTimeNanos = lastFrameTimeNanos;
        lastTime = System.nanoTime();
        mFrameIntervalNanos = (long) (1000000000 / 60.0);
    }

    @Override
    public void doFrame(long frameTimeNanos) {

        curTime = System.nanoTime();
        FPS++;
        if((curTime - lastTime) > 1000000000){
            Log.d(TAG, "doFrame: " + FPS);
            FPS = 0;
            lastTime = curTime;
        }

        //初始化时间
        if (mLastFrameTimeNanos == 0) {
            mLastFrameTimeNanos = frameTimeNanos;
        }
        final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;
        if (jitterNanos >= mFrameIntervalNanos) {
            final long skippedFrames = jitterNanos / mFrameIntervalNanos;
            if (skippedFrames > 30) {
                //丢帧30以上打印日志
                Log.i(TAG, "Skipped " + skippedFrames + " frames!  "
                        + "The application may be doing too much work on its main thread.");
            }
        }
        mLastFrameTimeNanos = frameTimeNanos;
        //注册下一帧回调
        Choreographer.getInstance().postFrameCallback(this);
    }
}

小结

使用Choreographer的postCallback()、postFrameCallback() 作用理解:发送任务 存队列中,监听VSync信号,当前VSync到来时 会使用mHandler发送异步message,这个message的Runnable就是队列中的所有任务。

流程图:

img


标题:Android屏幕刷新机制-Choreographer
作者:OkAndGreat
地址:http://zhongtai521.wang/articles/2022/11/10/1668087007581.html

评论
发表评论
       
       
取消